CALCULATION OF FRACTURE DIAGRAMS
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This article discusses equations describing critical and subcritical fracture diagrams, obtained from
the energy criterion for fracture in an integral formulation, The equations take approximate account of the
presence of a small plastic region ahead of the end of a crack and include the coefficient of the intensity of
the stresses and, in the case of cyclic loading, one empirical coefficient. The results of the calculation are
in agreement with experiment,

A functional dependence between the external loading and the length of the principal fracture in a flat
sample, called the fracture diagram, reflects the ability of a material to resist the propagation of a frac~
ture, and can possibly serve as a basis for the design calculations of structural parts.

Fracture diagrams are determined experimentally using apparatus which records the length of a frac-
ture [1]. Fracture diagrams can be obtained by calculation on the basis of an assumed model of the frac-
ture into whose formulation a small number of experimentally determined characteristics of the material
enter [2, 3].

We shall examine one possible method of making such a calculation and compare its results with ex-
periment.,

We write the energy criterion for a fracture with a thin plastic zone ahead of its edge [3]. For def-
initeness we shall consider a two-dimensional body with a single rectilinear fracture (y=:0, |x| = 1)
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Here oy =0y (x) is the stress from a given loading, arising at the x axis in a body without a fracture,
This stress enters into Eq. (1) with an opposite sign. Displacement of the points of the surface of the sec~
tion v=v(x, [) develops in the direction of the y axis as a result of the action of the cracking stress dy in
the region y=0, |x| =1, and of the stress Oy =0y in the regions I < | x| = a. The plastic zone occupies the
regiony =1 < |x| =a, which, for the solution of the problem, is taken as the section. The stress o, is sym-
metrically applied to the surface of the section I < Ix| = & and, furthermore, we assume that the limit of

strength of material, o, is constant. The surface density of the fracture energy is equal to Y.

After differentiation of Eq. (1) we obtain
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To take approximate account of the presence of a plastic zone we assume the condition of the small-
ness of its length, a—17; this means that in the integral, taken within the limits from I to a, we shall assume
that oy(x) =0y (). In addition, we postulate the invariability of the form of the plastic zone, which is ex~
pressed by the condition for self-similarity
dv ov
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Taking into consideration that v (@, 1) =0, we find
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Substitution of this integral into (2) gives the relationship
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If, in this equation, the derivative 8v/9l is determined from the elastic solution, we arrive at an en-
ergy criterion of the form
1
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in which the postulation v (I, I)#0 approximately reflects the existence of a plastic zone at the end of the
section.

Condition (4) serves to calculate: a) the critical fracture diagram with

4
S
and b) the subcritical fracture diagram with
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where p is the parameter of the external loading (ay ®) =pf &)).
Further, taking account of the known relationship

1
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and assuming {4] that

oy () v () = 2y0,2 (1) / oy

we obtain
for case a)
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In dimensionless form, Egqs. (5) and (6), respectively, have the form (here oy (x) = const =p)
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(A=ploy, E=1/c, Ks=K/K_, ¢ =nK?/85.2)
where K, is the critical coefficient of the intensity of the stresses.

These equations take account of the form of the body and of the scheme of loading, by the coefficient
of the intensity of the stresses, K.
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T o For the extension of a band of width 2b with a central
! 3 fracture of length 27 we have (8 =b/c) [5]
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Critical fracture diagrams, plotted using Eq. (7)taking
1109 7 7153 ¥, cycles expression (9) into account, are shown by the solid lines on
Fig. 1. The calculations were made for flat samples made
of aluminum alloys D16T—1 points a, curve 1 (0, =44.6 kg/
mm?, E=7x 103 kg/mm o =252 kg/mm3/2) w1th a size of
600 X 200 X 1,4 mm3, and VAD—23 points b, curve2 (y,=49.7
kg/mm?, E="7.3 x 103 kg/mm?, K, =125 kg/m¥?) with a size
. // of 300 X 100 x 1,8 mm?®, The experimental points are plotted
P on the same figure, each point corresponding to one sample.
The dotted line shows the critical diagram for a plane, ob-
tained for alloy D16T~1 from the energy criterion, taking
W account of the thin plastic zone ahead of the end of the frac-

// / ture [3]. For VAD-23, the solutions for a band and aplane

~ N, cycles practically coincide.
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Figure 2 gives a comparison of subcritical fracture
diagrams, obtained from experiment and plotted using Eq.
(8), for alloy VAD-23; the solid lines are experimental, and
the dotted lines calculated.

Equation (6) or (8) also makes it possible to calculate the increase in the length of a fracture with
the number of cycles, N, under repeated variable loading. To this end, a family of infegral curves p ()
of Eq. (6) was plotted, whose parameters are the initial length of the fracture. Each cycle of the loading,
when the loading parameter is varied within the limits from py,i t0 Ppyax. COrresponds to an increment
in the length of the fracture Al, determined from the integral curve p () [3]. The service life with respect
to the number of cycles is determined by the condition dp/dl =0, i.e., the calculation is terminated at the
moment when the length of the fracture attains a critical value with ppyi <P=Dy;x-

Figure 3 shows the results of calculation and experiment with repeating static loading for sheet sam-
ples of the previous sizes made of D16T-1 and SAP (0}, =32.5 kg/mm?, E=7 x 10% kg/mm?, K =245 kg/
mm?® % and sheet samples cut out in the direction of rolling, with a size of 300 x 100 x.1,5 mm?, made of
titanium alloy VT~14 (o, =130 kg/mm?, F=11.5 x 10® kg/mm?, K, =200 kg/mm?®?), The initial length of
the fracture in the aluminum alloys 2] ;=12 mm, the maximal stress of a cycle pyax =16 kg/mm?, the co-
efficient of the asymmetry r=0.2, and the frequency 200 cycles/min, For the titanium alloy, 27,=10 mm,
Pmax =26 kg/mm?, r=0,2, The solid lines represent calculation, and the dotted lines the result of experi-
ment: 1) D16T-1; 2) VT-14; 3) SAP.

In calculating the curves [ —N, the partial decrease in the length of a fracture with loading was taken
into consideration. This experimentally known effect [6] is obviously due to residual compressive stresses
arising with removal of the load in the region of plastic deformations at the end of the fracture. The open-
ing~up of a fracture was taken into account by the coefficient o, which was introduced in the following man-
ner: lji=1j +cAl, where [ +1 is the length of the fracture before the i +1st cycle, and A7 is the incre-
ment in the length of the fracture in the i-th cycle. It was established by trial and error that the coefficient
o varies as a function of the number of cycles in accordance with the law represented in Fig. 4. The leg~
end is the same as in Fig. 3. This dependence can be assumed to be characteristic for a given material
and it is proposed to use it in calculation of the service life of structural elements whose form differs
from the form of the sample.

The authors thank V. M, Markochev and B. A, Drozdovskii for kindly furnishing the experimental
results,
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