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This ar t ic le  d iscusses  equations descr ib ing cr i t ica l  and subcri t ical  f rac ture  d iagrams,  obtained f rom 
the energy  c r i t e r ion  for  f rac tu re  in an integral  formulat ion.  The equations take approximate account of the 
p resence  of a smal l  plast ic  region ahead of the end of a c rack  and include the coefficient of the intensity of 
the s t r e s se s  and, in the case of cyclic loading, one empi r i ca l  coefficient.  The resul ts  of the calculation are 
in agreement  with exper iment .  

A functional dependence between the external  loading and the length of the principal  f rac ture  in a fiat 
sample,  cal led the f rac tu re  diagram,  re f lec ts  the ability of a mate r ia l  to r e s i s t  the propagation of a f r a c -  
ture ,  and can possibly  serve  as a bas is  for  the design calculat ions of s t ruc tura l  par ts .  

F rac tu re  d iagrams are determined exper imenta l ly  using apparatus which r eco rds  the length of a f r a c -  
ture i l l .  F rac tu re  d iagrams can be obtained by calculation on the basis  of an assumed model of the f r a c -  
ture  into whose formulat ion a small  number  of exper imenta l ly  determined cha rac t e r i s t i c s  of the mater ia l  
en ter  [2, 3]. 

We shall examine one possible method of making such a calculat ion and compare  its resu l t s  with ex-  
per iment .  

We write the energy  c r i t e r ion  for  a f rac tu re  with a thin plast ic zone ahead of its edge [3]. Fo r  def- 
initeness we shall cons ider  a two-dimensional  body with a single rec t i l inear  f rac ture  (y -0 ,  Ixl - l) 
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o l 

Here Cry = ~y (x) is the s t r e s s  f rom a given loading, ar is ing at the x axis in a body without a f r ac tu re .  
This s t r e s s  en ters  into Eq. (1) with an opposite sign. Displacement of the points of the surface of the sec -  
t ion v=v(x,  l) develops in the direct ion of the y axis as a resul t  of the action of the c racking  s t r e s s  ay in 
the r e g i o n y = 0 ,  ix[-< l ,  and of the s t r e s s  Cry-(r 0 in the regions l < ix[-< a .  The plast ic  zone occupies the 
region y = 1 < ix] -< a, which, for the solution of the problem,  is taken as the section. The s t r e s s  a 0 is s y m -  
me t r i ca l ly  applied to the sur face  of the sect ion l < ix ] ~ a and, fu r the rmore ,  we assume that the l imit  of 
s t rength of mater ia l ,  o b ,  is constant .  The sur face  densi ty of the f rac tu re  energy  is equal to % 

After  differentiat ion of Eq. (1) we obtain 
l a 

f ~ S 2 T  - -  6 v - ~ -  dx ~- nov (l, l) - -  (% --  r "-~ dx = O. ( 2 )  

o l 

To take approximate account of the presence  of a plast ic  zone we assume the condition of the smal l -  
ness  of its length, a - l ;  this means that in the integral ,  taken within the l imits  f rom l to a, we shall assume 
that (ry(X)=~y(/). In addition, we postulate the invariabil i ty of the fo rm of the plast ic  zone, which is ex-  
p re s sed  by the condition for  se l f - s imi la r i ty  

Ov ~v 

Taking into considera t ion that v (a, [ ) = 0 ,  we find 
n 

I o, , ( %  - -  60)  -~  dx = [% (1) - -  6 .1  v ( l ,  l),, 
! 

Substitution of this integral  into (2) gives the relat ionship 
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2T --  6 ll (I) v (I, l) -- I Oil " ~  ax = 0.., (3) 
o 

If, in  this  equat ion,  the der iva t ive  ~v/Ol  is  d e t e r m i n e d  f r o m  the e l a s t i c  solution,  we a r r i v e  at an e n -  
e r g y  c r i t e r i o n  of the f o r m  

! 

5 1  (2"; - -  %v)  dx = 0 (4) 
0 

in  which the pos tu la t ion  v (l, l ) ~0 app rox ima te ly  r e f l ec t s  the ex i s t ence  of a p las t i c  zone at the end of the 
sec t ion .  

Condit ion (4) s e r v e s  to ca lcu la te :  a) the c r i t i c a l  f r a c t u r e  d i a g r a m  with 

8 =~-/81 

and b) the subc r i t i c a l  f r a c t u r e  d i a g r a m  with 

i o  o dp~. 

where  p is the p a r a m e t e r  of the ex t e rna l  loading (ay (x) = p f  (x)), 

F u r t h e r ,  taking account  of the known re la t ionsh ip  

and a s s u m i n g  [4] that  

we obtain  

l 

K ~ / E = i % COy / Ol):dx 
o 

f o r  ca se  a) 

f o r  ca se  b) 

2T [i  - -  %2 (l) / %~] - -  K z / E = 0 

dp 2T [ t  - -  %2 (l) / ~ ]  - -  Kz / g 

d~ - -  (2 / g )  S K (OK / ap) dl + A~;l~ v (l) 1%2 

In  d i m e n s i o n l e s s  f o r m ,  Eqs .  (5) and (6), r e spec t ive ly ,  have the f o r m  (here gy (x) -= c o n s t = p )  

l -- )~-~ -- Ko ~ = 0 

(5) 

(6) 

(7) 

d~, l i -- s - -  Ko ~ 
d~ -- 2 ~ .~ S Ko (OKo / Os d~ 

( ~ p / % ,  ~ = I / c ,  Ko=K/Kc ,  c:~Kc2/8%2 ) 

(8) 

where  K c is the c r i t i c a l  coeff ic ient  of the in tens i ty  of the s t r e s s e s .  

These  equa t ions  take account  of the f o r m  of the body and of the s cheme  of loading,  by the coeff ic ient  
of the in tens i ty  of the s t r e s s e s ,  K. 
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For  the extension of a band of width 2b with a central  
f rac ture  of length 2l we have (fl =b/c)  [5] 

K~ = n~ Y'~-~ [t + 0.595 (~ / ~)~ + 0481 (~ / ,~)~i. (9) 

Crit ical  f rac ture  diagrams,  plotted using Eq. (7)taking 
express ion  (9) into account, are shown by the solid lines on 
Fig. 1. The calculations were made for  flat samples made 
of aluminum alloys D16T-1, points a, curve 1 (~h=44.6 kg /  
mm 2, E =7 x 103 k g / m m  2, K c =252 k g / m m  3/2) with a size of 
600 • 200 • 1.4 mm 3, and VAD-23, points b, cu rve2  (~)=49.7 
k g / m m  2, E = 7.3 x 103 k g / m m  2, K c = 125 kg/m3/2) with a size 
of 300 • 100 x 1.8 mm 3. The experimental  points areplot ted  
on the same figure, each point corresponding to one sample. 
The dotted line shows the cr i t ical  d iagram for  a plane, ob- 
tained for  alloy D16T-1 f rom the energy cr i ter ion,  taking 
account of the thin plast ic zone ahead of the end of the f r ac -  
ture [3]. For  VAD-23, the solutions for  a band and aplane 
pract ica l ly  coincide. 

Figure 2 gives a compar ison  of subcri t ical  f rac ture  
d iagrams,  obtained f rom experiment  and plotted using Eq. 
(8), for  alloy VAD-23; the solid lines are experimental ,  and 
the dotted lines calculated. 

Equation (6) or  (8) also makes it possible to calculate the increase  in the length of a f rac ture  with 
the number of cycles ,  N, under repeated variable loading. To this end, a family of integral curves  p (l) 
of Eq. (6) was plotted, whose pa rame te r s  are the initial length of the f rac ture .  Each cycle of the loading, 
when the loading p a r a m e t e r  is varied within the l imits  f rom Pmin to Pmax, cor responds  to an increment  
in the length of the f rac ture  Al ,  determined f rom the integral curve p (l) [3]. The serv ice  life with respect  
to the number of cycles  is determined by the condition d p / d / = 0 ,  i.e., the calculation is terminated at the 
moment when the length of the f rac ture  attains a cr i t ical  value with Pmin<p-<Pma x. 

Figure 3 shows the resul ts  of calculation and experiment  with repeating static loading for  sheet s am-  
ples of the previous s izes made of D16T-1 and SAP ((rb= 32.5 k g / m m  2, E =7 • 103 k g / m m  2, K c =245 kg /  
mm 3/2) and sheet samples cut out in the direct ion of rolling, with a size of 300 x 100 • 1.5 mm 3, made of 
t i tanium alloy VT-14 (o b = 130 k g / m m  2, F = 11.5 • 103 k g / m m  2, K c = 200 kg/mm3/2). The initial length of 
the f rac ture  in the aluminum alloys 21 0 = 12 ram, the maximal s t ress  of a cycle Pma• = 16 k g / m m  2, the co-  
efficient of the a symmet ry  r=0 .2 ,  and the frequency 200 cycles / ra in .  For  the ti tanium alloy, 2lo  = 10 ram, 
Pmax = 26 k g / m m  2, r = 0.2. The solid lines represent  calculation, and the dotted lines the result  of exper i -  
ment:  1) D16T-1; 2) VT-14; 3) SAP. 

In calculating the curves  l - N ,  the part ial  decrease  in the length of a f racture  with loading was taken 
into considerat ion.  This experimental ly  known effect [6] is obviously due to residual  compress ive  s t r e s ses  
ar is ing with removal  of the load in the region of plast ic  deformations at the end of the f rac ture .  The open- 
ing-up of a f rac ture  was taken into account by the coefficient a, which was introduced in the following man- 
ner:  /i+1 = l  i +a / A l ,  where I i +2 is the length of the f rac ture  before the i +1st cycle, and A1 is the incre -  
ment in the length of the f rac ture  in the i- th cycle.  It was established by t r ia l  and e r r o r  that the coefficient 

var ies  as a function of the number  of cycles  in accordance with the law represented  in Fig. 4. The leg- 
end is the same as in Fig. 3. This dependence can be assumed to be charac te r i s t i c  for  a given mater ia l  
and it is proposed to use it in calculation of the service  life of s t ructura l  e lements  whose fo rm differs 
f rom the fo rm of the sample.  

The authors thank V. M. Markochev and B. A. Drozdovskii for  kindly furnishing the experimental  
resul ts .  
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